Lesson Plan

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (1st Semester) Session –2019-2020

Name of the Teacher: Dr. Archana

Department: Chemistry

Class: B.Sc (1st Semester)

Subject: Inorganic Chemistry

S.No.		ate nthly)	Topics to be Covered	Academic Activity Undertaken*
	From	То		
1.	24-07-2019	31-07-2019	Idea of de Broglie matter waves, Heisenberg uncertainty principle, atomic orbitals	Lecture
2.	01-08-2019	14-08-2019	Schrodingerwaveequation, significance of Ψ and Ψ^2 , quantumnumbers, radial andangularwave functionsandprobabilitydistribution curves	Lecture and group discussion
3.	16-08-2019	31-08-2019	Shapes of s, p, d orbitals,AufbauandPauliexclusionprinciple,Hund's multiplicity rule,Electronicconfigurationof elements and ions	Lecture
4.	02-09-2019	14-09-2019	Position of elements in the periodic table, Effective nuclear charge and its calculation, Atomic and ionic radii, ionization energy, electron affinity and electronegativity	Lecture and group discussion
5.	16-09-2019	30-09-2019	Methods of	Lecture

			· - · · ·	
			determination of	
			electronegativity, trends	
			in periodic table and	
			application in predicting	
			and explaining the	
			chemical behavior	
6.	01-10-2019	14-10-2019	Chemical properties of	Lecture
			the noble gases,	
			chemistry of xenon,	
			structure and bonding in	
			xenon compounds,	
			Comparative study,	
			diagonal relationships,	
			salient features of	
			hydrides	
7.	16-10-2019	31-10-2019	Solvation and	Lecture
			complexation tendencies	Lecture
			including their functions	
			in biosystems,	
			introduction to alkyls	
			and aryls. Covalent	
			Bond- Valence bond	
			theory and its limitations	
8.	01-11-2019	15-11-2019	Directional	Lecture, Group
0.	01 11 2017	10 11 2017	characteristics of	· -
			covalent bond, various	discussion and
			types of hybridizations	Seminar
			and shapes of simple	
			inorganic molecules and	
			ions. BeF ₂ , BF ₃ , CH ₄ ,	
9.	16-11-2019	30-11-2019	XeF ₄ , BF ₄ , PF ₆ , SnCl ₆ ²	Lastrona Conservation
7.	10-11-2019	30-11-2019	VSEPR Theory to NH ₃ ,	Lecture, Group
			H_3O^+ , SF ₄ , ClF ₃ , ICl ₂ ⁻	discussion and
			and H ₂ O, MO theory,	Seminar
			homonuclear elements	
			and ions and	
			heteronuclear (BO, CN,	
			CO^+ , NO^+ , CO , CN^-),	
10	00.10.0010	06 10 0010	diatomic molecules	_
10.	02-12-2019	06-12-2019	Percentage ionic	Lecture
			character from dipole	
			moment and	
			electronegativity	
			difference	

Lesson Plan

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (2nd Semester) Session –2019-2020

Name of the Teacher: Dr. Archana

Department: Chemistry

Class: B.Sc (2nd Semester)

Subject: Inorganic Chemistry

S.No.		ate nthly)	Topics to be Covered	Academic Activity Undertaken*
	From	То		
1.	09-01-2020	31-01-2020	Ionic Solids – Concept of close packing, Ionic structures, (NaCl type, Zinc blende, Wurtzite, CaF ₂ and antifluorite)	Lecture, PPT, videos explaining the close packing and structure
2.	01-02-2020	15-02-2020	Radius ratio rule and coordination number, limitation of radius ratio rule, lattice defects, semiconductors, Lattice energy and Born-Haber cycle, solvation energy and solubility of ionic solids	Lecture, PPT
3.	17-02-2020	29-02-2020	Polarizing power and polarisability of ions, Fajan's rule. Metallic bond-free electron, valence bond and band theories. Weak Interactions – Hydrogen bonding, Vander Waals	Lecture

			forces.	
4.	02-03-2020	14-03-2020	Comparative study	Lecture
			(including diagonal	
			relationship) of groups	
			13-14 elements,	
			compounds like hydrides,	
			oxides, oxyacids and	
			halides of groups 13-14,	
			hydrides of boron-	
			diborane	
5.	16-03-2020	31-03-2020	Higher boranes,	Lecture and group
			borazine, borohydrides,	discussion
			fullerenes, carbides,	
	01.04.0000	15.04.0000	fluorocarbons.	
6.	01-04-2020	15-04-2020	Comparative study of	Lecture
			groups 15-17	
			elements,Compounds	
7	16.04.2020	20.04.2020	like hydrides, oxides	.
7.	16-04-2020	30-04-2020	oxyacids and halides of	Lecture
			groups 15-17, silicates	
			(structural principle),	
8.	01-05-2020	04-05-2020	tetrasulphur tetranitride	Tantana
0.	01-03-2020	04-03-2020	Basic properties of	Lecture
			halogens, interhalogens	
			and polyhalides.	

Sample Format (Lesson Plan)

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (1st Semester) Session – (2019-20)

Name of the Teacher/s: Dr. Swatika Sharma

Department : Chemistry

Class : BSc 1(semester-1)

Subject: Organic Chemistry

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity Undertaken*
	From	То		
1	24 th july	31 st july	Structure and bonding	Lecture
2	31 st july	14 th august	Mechanism of organic	Lecture
			reactions	
3	16 th august	16 th	Electro-magnetic	Lecture
		september	spectrum; absorption	
			spectrum	
4	17 th	20 th october	Stereo-chemistry of	Lecture
	september		organic compounds 1	
5	21 st october	25 th	Stereo-chemistry of	Lecture
		november	organic compounds 2	

Lesson Plan

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (2nd Semester) Session – 2019-20

Name of the Teacher: Dr. Swatika Sharma

Department: P.G. Department of Chemistry

Class: B.Sc I

Subject: Organic Chemistry

S.No.		ate nthly)	Topics to be Covered	Academic Activity Undertaken*
	From	То		
1	9.01.20	31.01.20	Unit I Alkenes and	Lecture method
			Cycloalkenes:	
			Nomenclature of alkenes,	
			methods of formation,	
			mechanisms of	
			dehydration of alcohols	
			and dehydrohalogenation	
			of alkyl halides,	
			regioselectivity in alcohol	
			dehydration. The Saytzeff	
			rule, Hofmann elimination,	
			physical properties and	
			relative stabilities of	
			alkenes. Chemical	
			reactions of alkenes –	
			mechanisms involved in	
			hydrogenation,	
			electrophilic and free	
			radical additions,	
			Markownikiff's rule,	
			hydroboration-oxidation,	
			oxymercuration-reduction.	
			Epoxidation, ozonolysis,	
			hydration, hydroxylation	
			and oxidation with KMnO ₄	
2	01.02.20	29.02.20	Unit I Alkenes and	Lecture method
			Cycloalkenes:	

r	Γ			1
			Polymerization of alkenes.	
			Substitution at the allylic	
			and vinylic positions of	
			alkenes. Industrial	
			applications of ethylene	
			and propene.	
			Unit II Dienes and	
			Alkynes:	
			Methods of formation,	
			conformation and	
			Chemical reactions of	
			cycloalkenes.	
			Nomenclature and	
			classification of dienes :	
			isolated, conjugated and	
			cumulated dienes.	
			Structure of	
			allenes and butadiene,	
			methods of formation,	
			polymerization. Chemical	
			reactions -1 , 2 and 1,4	
			addition, Diels-Alder	
			reaction.	
			Nomenclature, structure	
			and bonding in alkynes.	
			Methods of formation.	
			Chemical reactions of	
			alkynes, acidity of alkynes.	
			Mechanism of	
			electrophilic and	
			nucleophilic addition	
			reactions, hydroboration-	
			oxidation, metal-ammonia	
			reductions, oxidation and	
			polymerization.	
3	02.03.20	31.03.20	Unit III Arenes and	Lecture method
			Aromaticity:	
			Nomenclature of benzene	
			derivatives. The aryl	
			group. Aromatic nucleus	
			and side chain. Structure	
			of benzene : molecular	
			formula and Kekule	
			structure. Stability and	
			carbon-carbon bond	
			lengths of benzene,	

		Γ		
			resonance structure, MO	
			picture. Aromaticity: The	
			Huckel Rule, aromatic	
			ions. Aromatic	
			electrophilic substitution –	
			general pattern of the	
			mechanism, role of σ -and	
			π complexes. Mechanism	
			of nitration, halogenation,	
			sulphonation, mercuration	
			and Friedel-Crafts	
			reaction. Energy profile	
			diagrams. Activating and	
			deactivating substituents,	
			orientation and ortho/para	
			ratio. Side chain reactions	
			of benzene derivatives.	
			Birch reduction. Methods	
			of formation and chemical	
			reactions of alkyl	
			benzenes, alkynyl	
			benzenes and biphenyl.	
4	01.04.20	30.04.20	Unit IV Alkyl and Aryl	Lecture method
			Halides: Nomenclature	
			and classes of alkyl	
			halides, methods of	
			formation, chemical	
			reactions. Mechanisms of	
			nucleophilic substitution	
			reactions of alkyl halides,	
			SN ² and SN ¹ reactions with	
			energy profile diagrams.	
			Polyhalogen compounds:	
			chloroform, carbon	
			tetrachloride. Methods of	
			formation of aryl halides,	
			nuclear and side chain	
			reactions. The addition-	
			elimination and the	
			elimination-addition	
			mechanisms of	
			nucleophilic aromatic	
			substitution reactions.	
1				
			Relative reactivities of	

*Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.

Sample Format (Lesson Plan)

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (1st Semester) Session – (2019-20)

Name of the Teacher/s: 1. Dr. Dipika Narula

Department : Chemistry

Class: B.Sc. I Section (s) A and B **Subject : Physical Chemistry**

S.No.	-	ate nthly)	Topics to be Covered	Academic Activity Undertaken*
	From	To	-	Unuertaken
1	24 th July, 2019	31 st July, 2019	Unit 1: Mathematical Concepts and Evaluation of Analytical Data:	Lecture method, Online sources
			Logarithmic relations, curve sketching, linear graphs and calculation of slopes, differentiation and integration of functions like ex, xn, sin x, log x; maxima and minima, partial differentiation and reciprocity relations. Terms of mean and median, precision and accuracy in chemical analysis, determining accuracy of methods, improving accuracy of analysis, data treatment for series involving relatively few	
			measurements, linear least squares curve	

			fitting, types of errors,	
2	1 st August, 2019	31 st August, 2019	Itting, types of errors, standard deviation.Unit-II:Gaseous States:Postulates of kinetic theory of gases, deviation from ideal behavior, Van der Waal's equation of state.Critical Phenomena: PV isotherms of real gases, 	Lecture method
3	2 nd September, 2019	30 th September, 2019	Unit-III: Chemical Kinetics-1 Chemical kinetics and its scope, rate of a reaction, factors influencing the	Lecture Method, Online Sources
			rate of a reaction- concentration, temperature, pressure, solvent, light, catalyst. Concentration dependence of rates,	

mathematical observatoristics of simple	
ahovestovistics of simple	
characteristics of simple	
chemical reactions – zero	
order, first order, second	
order, pseudo order, half	
life and mean life.	
4 1 st October, 19 th October, Determination of the Lecture	Method
2019 2019 order of reaction –	
differential method,	
method of integration,	
method of half life period	
and isolation method.	
Unit-IV: Chemical	
Kinetics-II	
Theories of Chemical	
Kinetics: Effect of	
temperature on rate of	
reaction, Arrhenius	
equation, concept of	
activation energy.	
5. 21 st October, 30 th Simple collision theory	
2019 November, based on hard sphere	
2019 model, transition state	
theory (equilibrium	
hypothesis). Expression	
for the rate constant	
based on equilibrium	
constant and	
thermodynamic aspects.	
Catalysis and general	
characteristics of	
catalytic reactions,	
Homogeneous catalysis,	
acid-base catalysis and	
enzyme catalysis	
including their	
mechanisms, Michaelis	
Menten equation for	
enzyme catalysis and its	
*Any of these _ (i) Lecture Method: (ii) PPT: (iii) Online Sources: (iv) Group Discussion: (v) Case Studies of	

Sample Format (Lesson Plan)

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (2nd Semester) Session – (<u>2019-20</u>)

Name of the Teacher/s: 1. Dr. Dipika Narula

Department : Chemistry

Class:_B.Sc. I Section (s) <u>A and B</u> **Subject Physical Chemistry**

S.No.		ate nthly)	Topics to be Covered	Academic Activity Undertaken*
	From	То		
1	9 th January, 2020	31 st January, 2020	Unit 1: Thermodynamics I	Lecture method, Online sources
			Definition of Thermodynamic Terms: System, surroundings etc. Types of systems, intensive and extensive properties. State and path functions and their differentials. Thermodynamic process. Concept of heat and work.	
			First Law of Thermodynamics: Statement, definition of internal energy and enthalpy, Heat capacity, heat capacities at constant volume and pressure and their relationship. Joule's Law-Joule-Thomson coefficient and inversion	

			temperature. Calculations of w, q, dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible	
2	1 st February, 2020	29 th February, 2020	process. Unit-II: Thermochemistry	Lecture method
			Standard state, standard enthalpy of formation- Hess's Law of constant Heat Summation and its applications. Heat of reaction at constant pressure and at constant volume. Enthalpy of neutralization. Bond dissociation energy and its calculation from thermo-chemical data, temperature dependence of enthalpy. Kirchoff's equation.	
3	2 nd March, 2020	31 st March, 2020	Unit-III: Colloidal State Definition of colloids, classification of colloids. Solids in liquids (sols): Properties –kinetic, optical and electrical; stability of colloids, protective action, Hardy- Schulze rules, gold number. Liquids in liquids (emulsions) : Types of emulsions, preparation. Emulsifier. Liquids in	Lecture Method, Online Sources
			solids (gels): Classification, preparation and properties, inhibition, general applications of	

			colloids.	
4	1 st April, 2020	15 th April , 2020	colloids.Unit-IV: Solutions, Dilute Solutions and Colligative Properties:Ideal and non-ideal solutions, methods of expressing concentrations of solutions, activity and 	Lecture Method
			weight and elevation in	