Sample Format (Lesson Plan)

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (5th Semester) Session – (2019-20)

Name of the Teacher/s: Ms. Sonia

Department: Chemistry

Class: B.Sc III Subject: Inorganic Chemistry Section (s): Non Med B

S.No.	Da	ate	Topics to be Covered	Academic
	(Mor	nthly)		Activity
	From	То		Undertaken*
1	24-07-2019	20-08-2019	Ligand Bonding in Transition Metal Complexes Limitations of valence bond theory, an elementary idea of crystal – field theory, crystal field splitting in octahedral, tetrahedral and square planar complexes, factors affecting the crystal – field parameters, Spectro chemical Series.	Lecture Method
2	21-08-2019	30-09-2019	Thermodynamic and Kinetic Aspects of Metal Complexes A brief outline of thermodynamic and Kinetic stability of metal complexes and factors affecting the stability, substitution reactions of square planar complexes	Lecture Method
3	01-10-2019	31-10-2019	Organometallic Chemistry Definition, nomenclature and classification of organometallic compounds. Preparation, properties, bonding and applications of alkyls and aryls of Li, Al, Hg, Sn and Ti, a brief	Lecture Method, assignments and Group Discussion

			account of metal – ethylenic complexes and homogeneous hydrogenation, mononuclear carbonyls and the nature of bonding in metal carbonyls	
4	01-11-2019	16-11-2019	Bioinoganic Chemistry	Lecture Method and
			Essential and trace elements in	Group Discussion
			biological processes,	
			metalloporphyrins with special	
			reference to haemoglobin and	
			myoglobin. Biological role of	
			alkali and alkaline earth metal	
			ions. Nitrogen fixation	

*Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc. Other Methods adopted by the teacher – Please write the specific teaching method

Sample Format (Lesson Plan)

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (6th Semester) Session – (2019-20)

Name of the Teacher/s: Ms. Sonia

Department : Chemistry

Class: B.Sc III Subject: Inorganic Chemistry Section (s): Med A, Non Med B

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity
	From	To	-	Undertaken
1	09-01-2020	31-01-2020	Silicones and Phosphazenes Silicones and phosphazenes as examples of inorganic polymers, nature of bonding in triphosphazenes.	Lecture Method
2	01-02-2020	29-02-2020	Hard and Soft Acids and Bases Classification of acids and bases as hard and soft Pearson's HSAB concept, acid-base strength and hardness and softness. Symbiosis, theoretical basis of hardness and softness, electronegativity and hardness and softness	Lecture Method
3	2-03-2020	31-03-2020	Electronic Spectra of Transition Metal Complexes Types of electronic transitions, L – S coupling, selection rules for d-d transitions, spectroscopic ground states, Orgel – energy level diagram for d1 and d9states, discussion of the electronic spectrum of [Ti(H2O)6]3+ complex ion	Lecture Method and Group Discussion
4	01-04-2020	18-04-2020	MagneticPropertiesofTransition Metal ComplexesTypesTypesofmethodsofdeterminingmagneticsusceptibility,spin-onlyformula.Correlationorbitalcontributiontomagneticmoments,applicationofmagneticmomentdatafor3dmetalcomplexes	Lecture Method

Lesson Plan

Mehr Chand Mahajan D.A.V. College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (5th Semester) Session –2019-2020

Name of Teachers: Dr. Shefali Dhiman

Department: Chemistry

Class: B. Sc. IIIrd year (5th Semester) Subject: Organic Chemistry (CH-XVIII) Lesson Plan: Unit 1, 2, 3 and 4.

S. No.	Da	ite	Topics to be Covered	Academic
	(Mon	thly)	_	Activity
	From	То		Undertaken*
1.	24-07-2019	31-07-2019	Unit 1: Electromagnetic	Lecture
			spectra: Absorption spectra	
			UV Absorption spectroscopy:	
			Beer Lambert Law, molar	
			absorptivity, presentation and	
			analysis of UV spectra.	
2.	01-08-2019	31-08-2019	Unit 1: UV Absorption	Lecture, group
			spectroscopy: types of	discussion
			electronic transitions, Effects	
			of conjugation, chromophore,	
			auxochromes, bathochromic,	
			hypsochromic, hyperchromic	
			shifts, UV spectra of conjugated	
			enes and enones, Woodward	
			fisher rules and application to	
			conjugated alkenes and	
			carbonyl compounds	
			Unit 2: Electromagnetic	
			spectra: Absorption spectra	
			IR Absorption spectroscopy:	
			Molecular vibrations, Hooke's	
			law, selection rules, intensity	
			and positions of IR bands,	
3.	02-09-2019	30-09-2019	Unit 2: IR Absorption	Lecture, group

			spectroscopy: measurement of IR spectrum, finger print region, IR absorption of various functional groups, and interpretation of IR spectra of simple organic compounds. Unit 3: Spectroscopy Nuclear Magnetic resonance spectroscopy (NMR): ¹ H NMR, nuclear shielding and deshielding, chemical shift, spin-spin coupling, coupling constants.	discussion
4.	01-10-2019	31-10-2019	Unit 3: Spectroscopy Nuclear Magnetic resonance spectroscopy (NMR): area of signals, interpretation of NMR spectra of simple organic molecules. Unit 4: Carbohydrates Classification and structure, monosaccharides, osazone formation, interconversion of glucose to fructose, chain lengthening and chain shortening of aldoses, configurations of monosaccharides, erythro and threo diastereomers.	Lecture, group discussion
5.	01-11-2019	20-11-2019	Unit 4: Carbohydrates Conversion of glucose to mannose, formation of glucosides, ethers and esters, determination of ring size of monosaccharides, cyclic structure of D-glucose, mechanism of mutarotation. Structure of ribose and deoxyribose. Introduction to disaccharides (maltose, sucrose, lactose) And polysaccharides (starch and cellulose)	Lecture, online resources

*Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.

Lesson Plan

Mehr Chand Mahajan D.A.V. College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (6th Semester) Session –2019-2020

Name of Teachers: Dr. Shefali Dhiman

Department: Chemistry

Class: B. Sc. IIIrd year (6th Semester) Subject: Organic Chemistry (CH-XXII) Lesson Plan: Unit 1, 2, 3 and 4.

S. No.	Date		Topics to be Covered	Academic
	(Mon	thly)		Activity
	From	То		Undertaken*
1.	09-01-2020	31-01-2020	Unit 1: Amino acids, Peptides,	Lecture
			Proteins and Nucleic acids	
			Classification, structure,	
			stereochemistry of amino acids,	
			acid-base behavior, isoelectric	
			point, electrophoresis,	
			preparation and reactions of	
			amino acids. Structure and	
			nomenclature, classification of	
			peptides, proteins. Peptide	
			structure determination, end	
			group analysis, selective	
			hydrolysis of peptides.	
2.	01-02-2020	29-02-2020	Unit 1: Classical and solid-	Lecture group
			phase peptide synthesis. Levels	discussion
			of protein structure, protein	uiscussion
			denaturation/renaturation.	
			Introduction to nucleic acids,	
			ribonucleosides and	
			ribonucleotides, double helical	
			structure of DNA.	
			Unit 2: Synthetic polymers	
			Addition or chain growth	
			polymerization, free radical and	

ionic vinyl polymerization, Zieglar-Nata Polymerization, vinyl polymers, Condensation Polymerization,	Tantan
b of the 2: Polyesters, polyanides, phenol formaldehyde resins, epoxy resins, urea formaldehyde resins, polyurethanes, Natural and synthetic rubbers. Unit 3: Organic synthesis via enolates Acidity of α-hydrogens, alkylation of diethyl malonate and ethyl acetoacetate. Synthesis of ethyl acetoacetate: Claisen condensation, Keto- enol Tautomerism of ethyl acetoacetate. Alkylation and acylation of enamines.	Lecture, group discussion
Unit4:OrganometallicCompoundsOrganomagnesium compounds:Organard reagents-Synthesis,structureandchemicalreactions.OrganozincOrganolithiumCompounds:Synthesisandchemicalreactions.OrganolithiumCompounds:Synthesisandchemicalreactions.OrganolithiumCompounds:Synthesisandchemicalreactions.	Lecture, group discussion and seminar
	 ionic vinyl polymerization, Zieglar-Nata Polymerization, vinyl polymers, Condensation Polymerization, Unit 2: Polyesters, polyamides, phenol formaldehyde resins, epoxy resins, urea formaldehyde resins, polyurethanes, Natural and synthetic rubbers. Unit 3: Organic synthesis via enolates Acidity of α-hydrogens, alkylation of diethyl malonate and ethyl acetoacetate. Synthesis of ethyl acetoacetate: Claisen condensation, Keto- enol Tautomerism of ethyl acetoacetate. Alkylation and acylation of enamines. Unit 4: Organometallic Compounds Organomagnesium compounds: Grignard reagents- Synthesis, structure and chemical reactions. Organozinc Compounds: Synthesis and chemical reactions. Organolithium Compounds: Synthesis and chemical reactions.

*Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc. Other Methods adopted by the teacher – Please write the specific teaching method

Lesson Plan

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (5th Semester) Session – (2019-2020)

Name of the Teacher: Dr. Dhanya James

Department : P.G. Department of Chemistry

Class: B.Sc III

Subject: Physical Chemistry

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity
	(NIOI From		-	Unuertaken
1.	24-07-2019	31-07-2019	Elementary Quantum Mechanics-I: Black- body radiation, Planck's radiation law, photoelectric effect, heat capacity of solids, Bohr's model of hydrogen atom (no derivation) and its defects, Compton effect. De Broglie hypothesis, the Heisenberg's uncertainty principle, Sinusoidal wave equation, Hamiltonian operator, Schrodinger wave equation and its importance.	Lecture Method and Group Discussion
2.	01-08-2019	31-08-2019	Physical interpretation of the wave function, postulates of quantum mechanics, particle in a one dimensional box. Schrodinger wave equation for H-atom, separation into three equations (without derivation), quantum numbers and their importance, hydrogen like wave functions, radial wave functions, angular wave functions.	Lecture Method and Group Discussion
3.	02-09-2019	30-09-2019	Elementary Quantum Mechanics-II: Molecular orbital theory, basic ideas – criteria for forming M.O. from A.O., construction of M.O.'s by LCAO–H ²⁺ ion. Calculation of energy levels from wave functions, physical picture of	Lecture Method and Group Discussion

			bonding and antibonding wave functions, concept of σ , σ *, π , π * orbitals and their characteristics. Hybrid orbitals – sp, sp ² , sp ³ ; calculation of coefficients of A.O.'s used in these hybrid orbitals. Introduction to valence bond model of H2, comparison of M.O. and V.B. models.	
4.	01-10-2019	31-10-2019	Photochemistry-I: Interaction of radiation with matter, difference between thermal and photochemical processes. Laws of Photochemistry: Grothus – Drapper law, Stark – Einstein law, Jablonski diagram depicting various processes occurring in the excited state.	Lecture Method and Group Discussion
5.	1-11-2019	30-11-2019	Photochemistry-II: Qualitative description of fluorescence, phosphorescence, non-radiative processes (internal conversion, intersystem crossing), quantum yield, photosensitized reactions – energy transfer processes (simple examples) Photochemistry of carbonyl compounds and alkenes	Lecture Method and Group Discussion
6.	2-12-2019	7-12-2019	Revision and Solution of previous years' question papers	Group Discussion

*Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc. Other Methods adopted by the teacher – Please write the specific teaching method ed by the teacher – Please write the specific teaching method

Sample Format (Lesson Plan)

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (6th Semester) Session – (2019-2020)

Name of the Teacher: Dr. Dhanya James

Department : P.G. Department of Chemistry

Class: B.Sc III

Subject: Physical Chemistry

S.No.	Date		Topics to be Covered	Academic Activity
	(Mor	nthly)		Undertaken*
	From	То		
1.	09-01-2020	31-01-2020	Spectroscopy : Introduction : Electromagnetic radiation, regions of the spectrum, basic features of different spectrometers, statement of the Born-Oppenheimer approximation, degrees of freedom.	
2.	01-02-2020	29-02-2020	Rotational Spectrum: Diatomic molecules. Energy levels of a rigid rotor (semi – classical principles), selection rules, spectral intensity, determination of bond length, qualitative description of non- rigid rotor, isotope effect.	
3.	02-03-2020	31-03-2020	Solid State-I: Definition of space lattice, unit cell and Miller Indices Laws of Crystallography – (i) Law of Constancy of Interfacial Angles, (ii) Law of Rationality of Indices, (iii) Law of Symmetry. Symmetry elements in crystals.	
4.	01-04-2020	18-4-2020	SolidState-II:X-raydiffractionbycrystals.DerivationofBraggequation.Determinationofcrystalstructure of NaCl, KCl and CsCl	

(Laue's method and powder	•
method). Applications of	
Powder diffraction for structure	;
determination, Thermal and	
photochemical reaction in solid	
state	

 *Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc. Other Methods adopted by the teacher – Please write the specific teaching method