Sample Format (Lesson Plan)

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (3rd Semester) Session – (2019-20)

Name of the Teacher/s: 1. Dr. Shefali

2. Dr. Rishu

Department: P.G. Department of Chemistry

Class: M.Sc. 3rd Semester Subject: Applications of Spectroscopy CH-511 Section

(s) -

Teacher	Date		Topics to be Covered	Academic
	(Mor	nthly)		Activity
	From	To		Undertaken*
1.	23-07-2019	31-07-2019	Electron Spin Resonance Spectroscopy: Hyperfine coupling, spin polarization for atoms and transition metal ions, spin orbit coupling and significance of g-tensors, application of transition metal complexes (having one unpaired electron) including biological systems and to inorganic free radicals such as PH ₄ , F ₂ and [BH ₃].	Lecture Method, PPT) Case Studies and Online Sources
2.	23-07-2019	31-07-2019	Ultraviolet and Visible Spectroscopy: Various electronic transitions (185-800nm), Beer-Lambert law, effect of solvent on electronic transition, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fieser- Woodwared rules for conjugated dienes and carbonyl, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyles.	Lecture Method, PPT and Group Discussion
1.	01-08-2019	31-08-2019	Nuclear Magnetic Resonence of Paramagnetic: Substances in Solution The contact and psedo contact shifts, factors affecting nuclear relaxation	Lecture Method, PPT and Online Sources

			Some applications includi	inα
			biochemical systems, an overview	
			NMR of metal nuclides with empha	
			on 195 Pt and 119 Sn NMR.	
2	01-08-2019	31-08-2019	Infrared Spectroscop	
			Instrumentation and sample handling	
			Characteristics vibrational frequence	
			of alkanes, alkenes, alkynes, aroma compounds, alcohols ,ethetrs fhence	
			and amines .Detailed study	
			vibrational frequencies of carbon	
			compounds (ketones, aldehydes, este	
			amids acids, anhydrides, lacton	
			lactans and conjugated carbon	
			compounds). Effect of hydrog bonding of solvent effect	gen on
			vibrational frequencies, overton	
			combination bands and Fer	
			resonance. FT-IR of gaseous, solid a	
			polymeric materials. Nucle	
			Magnetic Resonance Spectroscopy	
			General introduction and definition	*
			chemical shift, spin spin interaction shielding mechanism of measureme	
			chemical shift values and correlati	
			for protons bonded to carb	
			1	and
			aromatic) anothernuclei (alcohol	
			phenols, enols, carboxlicacids, amin	
			amides &mercapto),chemic exchange.	cal
1	02-09-2019	30-09-2019	Mossbauer Spectroscopy: Basic	Lecture Method, , PPT Case
1	02-07-2017	30-07-2017	principles, spectral parameters	Studies and Online Sources)
			and spectrum display.	,
			Application of the technique to	
			the studies of (1) bonding and	
			structures of Fe +2 and Fe +3	
			compounds including those of intermediate spin , (2) Sn +2 and	
			Sn +4 compounds- nature of M-L	
			bond, coordination number,	
			structure and (3) detection of	
			oxidation state and inequivalent	
2	02.00.2010	20.00.2010	MB atoms.	Lasting Made A DDD 1
2	02-09-2019	30-09-2019	Effect of deuteration, complex	Lecture Method, PPT and Group Discussion
			spin-spin interaction between	Oroup Discussion
			two, three, four, five nuclei (first	
			order sperctra) virtual coupling,	
			stereochemistry, hindered	
			rotation, karplus curve variation	
			of coupling constant with	
			dihedral angle. simplification of	
			complex spectra- nuclear	

			magnetic double reasonane, contact shift reagents, solvent effects, fourier tansform technique, nuclear overhauser effect (NOE) resonance of other nuclei –F,P	
1	1-10-2019	31-10-2019	Vibrational Spectroscopy: Symmetrey and shapes of AB ₂ , AB ₃ , AB ₄ , AB ₅ and AB ₆ mode of bonding of ambidentate ligands. Ethylenediamine and diketonato complexes, applications of resonance	Lecture Method and Online Sources
2	1-10-2019	31-10-2019	Carbon-13 NMR spectroscopy: General considration chemical shift (aliphatic olefinic alkyne aromatic eteroaromatic and carbonyl carbon)coupling constants. Two dimension NMRspect- roscopy —COSY, NOESY, DEPT, APT and INADEQUATE technique.	Lecture Method, PPT and Group Discussion
1	1-11-2019	20-11-2019	Raman spectroscopy particularly for the study of active sites of metalloproteins.	Lecture Method and Online Sources
2	1-11-2019	20-11-2019	NMR spectroscopy –COSY, NOESY, DEPT, APT and INADEQUATE technique. Mass Spectrometry: Introduction, ion production – EI,CI, FD and FAB, factors affecting fragmentation, ion analysis, ion abundance. Mass septracl fragmentation of organic compounds, common functional group, molecular ion peak, metastabl peak, Mclafferty rearrangement. nitrogen rule, high resolution mass spectrometery. Example of mass spectral fragmentation of organic compounds with respect to their structure determination.	Lecture Method, PPT and Group Discussion

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.

Other Methods adopted by the teacher – Please write the specific teaching method

Lesson Plan

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (3rd Semester) Session – (2019-20)

Name of the Teachers: Dr. Madhuri Tanaji Patil

Department: P.G. Department of Chemistry

Class: M.Sc II Subject: Heterocyclic Chemistry (CH-513)

Da	ate	Topics to be Covered	Academic
(Mor	nthly)	•	Activity
From	To		Undertaken*
24.07.19	31.07.19	UNIT 1: Nomenclature of Heterocycles Replacement and systematic nomenclature (Hantzsch-widman System) for monocyclic fused and bridged hetrocycles Aromatic Heterocycles. General chemical behavior of aromatic heterocycles classification (structural type) criteria of aromaticity(bond length ring current and chemical shift in H NMR- Spectra empirical resonance energy delocalization energy and Dewar resonance energy Diamagnetic susceptibility exaltations) Non- aromatic Heterocycles. Strain-bond angle and torsional strains and their consequences in small ring heterocycles.	Lecture Method & Group Discussion about Introduction to relevant reference books And marking system in final paper
1.08.19	31.08.19	UNIT 1: Nomenclature of Heterocycles Conformation of six-membered heterocycles with reference to molecular Geometry, barrier to ring inversion, pyramidal inversion and 1,3-diaxial interaction. Stereo-electronic effects- anomeric and related effects Attractive interactions-hydrogen bonding and intermolecular nucleophilicelectrophilic interactions. UNIT 2: Heterocyclic synthesis Principles of heterocyclic synthesis involving cyclization reactions and cycloaddition Reactions. Three- membered and four-membered heterocycles-synthesis and reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes and thietanes. Synthesis and reaction including medicinal applications of benzopyrroles, benzofurans and benzothiophenes	Lecture Method & Case Studies. For Practice of nomenclature
2.09.19	30.09.10	UNIT 3: Meso-ionic Heterocycles General classification chemistry of some important meso-ionic heterocycles of type-A and B and their applications. Six-Membered Heterocycles With One Heteroatom Synthesis and reactions of pyrylium salt and pyrones and their comparison with Pyridinium & thiopyrylium salt and Pyridones synthesis and reactions of Quinolizinium and benzopyrylium salt coumarins and chromones Six-Membered Heterocycles with Two or More Hetroatoms: Synthesis and reactions	Lecture Method & Group Discussion for paper solving by giving Assignment

		of diazines, triazines, tetrazines and thiazines Unit 4: 1,2-Azoles: pyrazoles, isothiazoles and isoxazoles Introduction to 1,2-azoles, synthesis of 1,2-azoles. Addition on nitrogen: protonation, N-alkylation, N-acylation. Reaction with electrophilic and nucleophilic reagents. Reaction with bases: reaction of N-metallated pyrazole, reaction of C-metallated 1,2-azoles. Reaction with oxidizing and reducing agents.	
1.10.19	20.10.19	Unit 4: 1,3-Azoles: imidazoles, thiazoles and oxazoles Introduction to 1,3-azoles, synthesis of 1,3-azoles. Addition at nitrogen: protonation, N-alkylation, N-acylation. Reaction with electrophilic and nucleophilic reagents. Reaction with bases: reaction of N-metallated imidazole, reaction of C-metallated 1,3-azoles.Reaction with oxidizing and reducing agents. Synthesis and reaction of quaternary 1,3-azolium salt and 1,3-azole-N-oxide.	

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc. Other Methods adopted by the teacher – Please write the specific teaching method

LESSON PLAN

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (3rd Semester) Session – (2019-20)

Name of the Teacher/s: Dr. Aanchal Batra (AB)

Department: Post Graduate Department of Chemistry

Class: MSc II (Sem.III), Subject: Organotransition Metal Chemistry, Section (s): July-Dec.

2019

S.No.	Da		Topics to be Covered	Academic Activity
	(Mon	<u> </u>		Undertaken*
	From	To		
1	24-07-2019	31-08-2019	Fluxional	Lecture Method and
			Organometallic	Online Sources
			Compounds(AB)	
			Fluxionality and dynamic	
			equilibria in compounds	
			such as η2 olefin, η 2	
			Allyl and dienyl	
			Complexes	
			Compounds of	Lecture Method, Online
			Transition Metal	Sources and Group
			Carbon multiple	discussions
			Bonds(DJ)	
			Alkylidenes, alkylidynes,	
			low valent Carbenes and	
			carbynes-Synthesis,	
			nature of bond, Structural	
			Characteristics,	
			nucleophilic and	
			Electrophilic reaction on	
			the ligands, role in	
			organic synthesis	
2	02-09-2019	30-09-2019	Alkyls and Aryls of	Lecture Method, Group
			Transition Metals(AB)	discussions and
			Types, routes of	assignments
			synthesis, Stability and	
			decomposition Pathways,	
			organocopper in Organic	
			Synthesis	

			Transition Metal Compounds with Bonds to Hydrogen(DJ) Transition metal Compounds with bonds to hydrogen	Lecture Method, Class seminars, Unit test
3	01-10-2019	31-10-2019	Homogeneous Catalysis(AB) Stoichiometric reaction catalysis, homogeneous hydrogenation,	Lecture Method and Diagrammatic Representations
			Transition Metal Complexes of alkenes, alkynes, allyls(DJ) Transition Metal Complexes with unsaturated Organic molecules, alkenes, alkynes, Allyl, diene, dienyl, arene and trienyl complexes, preparations, properties, nature of bonding and structural features importantreactions relating to nucleophilic and electrophilic attack on ligands and to organic synthesis	Lecture Method, assignments, Class seminars
4.	01-11-2019	30-11-2019	Homogeneous Catalysis (cont.) (AB) Zeigler-Natta polymerization of olefins, catalytic reations involving carbon monoxide such as hydrocarbonylation of olefins (oxo reaction) oxopalladation reactions, activation of C-H bond Transition Metal Complexes of dienyls, arenes & trienyls(DJ) Preparations, properties,	Lecture Method and Diagrammatic Representations Lecture Method, Class seminars, Unit test

nature of bonding and
structural features
importantreactions
relating to nucleophilic
and electrophilic attack on
ligands and to organic
synthesis

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.

Other Methods adopted by the teacher – Please write the specific teaching method

LESSON PLAN

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (4th Semester) Session – (2019-20)

Name of the Teacher/s: Dr. Aanchal Batra (AB) & Dr. Dhanya James (DJ)

Department: Post Graduate Department of Chemistry

Class: MSc II (Sem.IV), Subject: Biophysical Chemistry Section (s): Jan-April 2020

S.No.		ate nthly)	Topics to be Covered	Academic Activity Undertaken*
	From	To		
1	09-01-2020	31-01-2020	Biological Cell and its Constituents (AB) Biological cell, DNA and RNA in living systems. Basic consideration. Proximity effects and molecular adaptation	Lecture Method and Online Sources
			Bioenergetics and ATP	Lecture Method, PPT,
			cycle (DJ) Standard free energy change in biochemical reaction, exergonic, endergonic reactions. Hydrolysis of ATP, sythesis of ATP from ADP, metal complexes and transition of energy, chlorophyls, photo system I and photo system II in cleavage of water	Assignments, Unit test
2	01-02-2020	29-02-2020	Enzymes, Mechanism of Enzyme Action(AB) Introduction and historical perspective, chemical and biological catalysis, Remarkable properties of enzymes like catalytic	Lecture Method, Group discussions and assignments

			power, specificity and regulation. Nomenclature and classification, extraction and purification. Fischer's lock and key and Koshland's induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labeling and enzyme modification by site-directed mutagenesis. Enzyme kinetics, Michaelis-Menten and Lineweaver-Burk plots, reversible and irreversible inhibition.	Locture Mathed DDT
			Thermodynamics of biopolymer solutions, Cell membranes and transport of ions(DJ) Thermodynamics of biopolymes solutions, osmotic pressure, membrane equilibrium, muscular contraction and engery generations in mechanochemical system. Structure and function of cell membrane, ion transport through cell membrane, Na+ /K+ Pump. Irreversible treatment of memhrane transport. Nerve conduction.	Lecture Method, PPT, Group discussions
3	02-03-2020	31-03-2020	Kinds of reactions Catalysed by Enzymes, Co-enzyme Chemistry(AB) Nucleophilic displacement on a phosphorus atom, multiple displacement	Lecture Method and Diagrammatic Representations

reactions and the coupling **ATP** cleavage of endergonic processes. Transfer of sulphate, addition and elimination reaction, enolic intermediates in isomerization reactions, βcleavage and condensation, some isomerization and rearrangement reactions. Enzyme catalyzed carboxylation and decarboxylation Cofactors as derived from vitamins, coenzymes, prosthetic groups, apoenzymes. Structure and biological function coenzyme A, thiamine pyrophosphate, Pyridoxal phosphate, NAD+,NADP+,FMN, FAD, lipoic acid, vitamin B12. Mechanism reaction catalyzed by the above cofactors Lecture Method, PPT, **Biological** macromolecules, Assignments, Unit test interactions & structural transitions(DJ) Nucleotide, torsion angles in poly nucleotide chains, the helical structure of polynucleic acids, high order structure in polynucleotides. Basic principles of interaction between molecules, water structure and its interaction with biomolecules, dipole interactions, side chain interactions. electrostatic interactions, base pairing in nucleic acids, base

			1	
			stacking, hydration and the	
			hydrophobic effect. Coil –	
			helix transitions in	
			proteins, statistical	
			methods for predicting	
			protein secondary	
			structures; melting and	
			annealing of	
			polynucleotide duplexes,	
			helical transitions in	
			double stranded DNA,	
			super coil dependent DNA	
			transitions predicting	
			helical structures in	
			genomic DNA.	
4	01-04-2020	20-04-2020	Biological Biological	Lecture Method
_	01-04-2020	20-04-2020	Macromolecules,	Diagrammatic
			Proteins(AB)	Representations, Referred
			Basic features of	many books
			macromolecules, their	many books
			configurations and	
			conformations. Amino	
			acids, the unique protein	
			sequence, secondary structures of proteins,	
			_	
			helical symmetry, effect	
			peptide bond on protein	
			conformations, the	
			structure of globular	
			proteins.	1 / M / 1 DDT
			Separation &	Lecture Method, PPT,
			Characterization of	Class seminars by
			biological	students
			macromolecules(DJ)	
			Sedimentation, moving	
			boundary sedimentation,	
			zonal sedimentation,	
			general principles of	
			electrophoresis,	
			electrophorsesis of	
			proteins and nucleic acids,	
			capillary electrophoresis.	

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.
Other Methods adopted by the teacher – Please write the specific teaching method

Sample Format (Lesson Plan)

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (4th Semester) Session – (2019-20)

Name of the Teacher/s: Dr. Swatika Sharma

Department : Chemistry

Class: M.Sc. II Subject Chemistry of Natural Products

S.No.		ate nthly)	Topics to be Covered	Academic Activity Undertaken*
	From	To		
01	9 th Jan, 2020	31 st Jan, 2020	Unit 1: Terpenoids and Carotenoids	Lecture method, Online sources
			Classification, nomenclature occurrence isolation general methods of structure determination, isoprene rule. Structure determination stereochemistry, Biosynthesis and synthesis of: citral, Terpeneol, Farnesol, santonin, phytol, Abietic Acid and Beta- Carotene.	
2	1 st Feb, 2020	29 th Feb, 2020	Unit-II: Alkaloids: Definition, nomenclature and physiological action occurrence isolation	Lecture method
			general method of structure elucidation degradation classification	

			based on nitrogen heterocyclic ring role of alkaloids in plants. Structure stereochemistry, synthesis and biosynthesis of: Ephedrin, Conine, Nicotine, Atropine, Quinine and Morphine.	
3	2 nd March, 2020	31st March, 2020	Unit-III: Steroids Occurrence nomenclature basic skeleton. Diel's hydrocarbon and Stereochemistry, isolation, structure determination and synthesis of: Cholesterol, Bile acids, Androsterone, Testosterone, Estrone, Progestrone, Aldosterone, Biosynthesis of steroids.	Lecture Method, Online Sources
4	1 st April, 2020	20 th April , 2020	Unit-IV: Plant pigments Occurrence nomenclature and general methods of structure determinations, isolation and synthesis of: Quercetin, Quercetin- 3-Glucoside, Vitexin, Diadzein, Cyanidin-7- arabinoside, cyanidine, Hirsutidin. Biosynthesis of Flavonoids: Acetate pathway and shikimic acid pathway. Porphyrins: structure and synthesis of haemoglobin and chlorophyll	Lecture Method

	Prostaglandins: Occurence, nomenclature biogenesis and synthesis of: PGE2 and PGF2 Synthesis and reaction of Pyretheroids and Rotenones.	
--	--	--

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.
Other Methods adopted by the teacher – Please write the specific teaching method

Lesson Plan

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (4th Semester) Session – (2020-20)

Name of the Teachers: 1. Dr. Qudrat Hundal (Unit II, IV & Unit III Oxidation)

2. Dr. Madhuri Tanaji Patil (Unit I, Unit III Reduction)

Department: P.G. Department of Chemistry

Class: M.Sc II Subject: Organic Synthesis I (CH-522)

Teac	c Date		Topics to be Covered	Academic Activity
her	(Monthly)		_	Undertaken*
	From	To		
1	09.01.20	31.01.20	Unit II Organic Synthesis: Introduction to Retrosynthesis, Electrophilic substitution reactions, Discussion of possible retrosynthesis routes of a target molecule and their comparison, Latent polarity, Linear and Convergent synthesis, Umpolung and synthesis of	PPT
2	09.01.20	31.01.20	cyclic molecules. Unit I: Organometallic Reagents Principle, Preparations, of the Organolithium and organomagnesium compounds in organic synthesis with mechanistic details.	Lecture method & Group discussion
1	01.02.20	29.02.20	Unit II Organic Synthesis: Functional Group Interconversions (FGIs), Retrosynthesis: Strategy and Planning, Practice examples elucidating all principles, Chemoselectivity, Protecting groups laying more emphasis on protection of carbonyl groups, alcohols and amines. Protection of just one of two identical groups. How to avoid the use of protecting groups and its advantages and disadvantages. Regioselectivity, Methods	Lecture method Group Discussion

			for the preparation of alkenes,	
			regioselective additions to alkenes, ketones, nucleophilic addition to α,β -	
			unsaturated carbonyl compounds,	
			nucleophilic addition to epoxides, Oxidation of ketones to esters and	
	01.00.00	20.02.20	Practice examples	
2	01.02.20	29.02.20	Unit I: properties and applications	Lecture method &
			Organolithium and organomagnesium	Group discussion
			compounds: Hg, Zn and Ce Compounds Transition metals: Cu,Pd,Ni, Fe, Co,	
			Rh, Cr and Ti Compounds	
1	02.03.20	31.03.20	Unit II Organic Synthesis: Stereoselectivity, Stereospecific	Lecture method Group Discussion
			reactions and stereoselective reactions,	Assignment given
			Cram's rule and Falkin-Ahn model and discussion of practice examples.	
			Unit III Oxidation: Introduction,	Lecture method
			Oxidation of alkenes i.e. Epoxidation,	Presentation using OHP
			Perhydroxylation using KMnO ₄ , OsO ₄ , Oxidation with iodine and silver	Presentation by students
			cartbonate (Woodward reaction and	
			Prevost reaction), Wacker process, oxidative cleavage of double bond,	
			Lemieux reagent, Oxidation of Aromatic	
			rings and Aromatic amines, Oxidation of saturated C-H groups (activated and	
			unactivated), Oxidation of alcohols by	
			chromic acid, DMSO, Ders-Martin reagent, MnO2, silver carbonate,	
			Oppenauer oxidation. Oxidation of diols,	
2	02.03.20	31.03.20	oxidation of aldehydes and ketones. Unit I: Other elements : Si ,B and	Lecture Method, PPT,
2	02.03.20	31.03.20	iodine (I) Compounds	used online sources
			Unit IV: Reduction Introduction Different reductive processes	& Assignments;
			Hydrocarbons-alkanes, alkenes, alkynes	class tests
			and aromatic rings carbonyl compounds-	
			aldehydes, ketones, acids and their derivatives.	
1	01.04.20	30.04.20	Unit III Oxidation: Oxidation of	Lecture method
			Carboxylic acids, amines, hydrazines and sulphides. Oxidation with Ruthenium	Presentation using OHP Presentation by students
			Tetroxide, Thallium nitrate and iodobenzene diacetate.	Assignment given

			Unit IV Rearrangements: Introduction,	Lecture method
			migratory aptitude, memory effects,	Assignment given
			Pinacol-pinacolone rearrangement,	Question papers
			Wagner Meerwein, Demjanov, Wolff,	discussed.
			Beckmann, Hoffmann, Curtius, Schmidt,	
			Baeyer-villiger, Neber, Shapiro,	
			Favorskii and benzilic rearrangements.	
2	01.04.20	30.04.20	Unit III: Reduction	Lecture method, PPT,
			epoxides. nitro, nitroso,	Online sources &
			azo and oxime groups. Hydrogenolysis.	Revision

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.
Other Methods adopted by the teacher – Please write the specific teaching method

Sample Format (Lesson Plan)

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (4th Semester) Session – (2019-20)

Name of the Teacher/s: New Teacher

Department : Chemistry Class_M.Sc. II__ Subject: Photochemistry & Solid

State Chemistry

S.No.	Date		Topics to be Covered	Academic Activity
	(Monthly)			Undertaken*
	From	To		
1	9 th January,	31st January,	Unit 3: Solid state	Lecture method, Online
	2020	2020	Chemistry	sources
			Solid state reactions: general principles, experimental procedures, co-precipitation as a precursor to solid state reactions, kinetics of solid state reactions. Organic Solids: Electrically conducting solids, organic charge transfer complexes, organic metals, new superconsuctors.	
2	1 st February, 2020	29 th February, 2020	Crystal defects and non- stochiometry: Perfect and imperfect crystals, intrinsic and extrinsic defects-point defects, line defects, vacancies- Schottky defects and Frenkel defects, Thermodynamics of	Lecture method

			Schottky defects and Frenkel defect formation, Colour Centres, non- stochiometry and defects.	
3	2 nd March, 2020	31 st March, 2020	Unit 4 Electronic properties and Band Theory Metals, insulators and semiconductors, electronic structure of solids-band theory of metals, insulators and semiconductors, intrinsic and extrinsic semimiconductors, doping semiconductors, p-n junctions, superconductors.	Lecture Method, Online Sources
4	1 st April, 2020	30 th April, 2020	Optical properties- Optical reflectance, photoconduction- photoelectric effects. Magnetic properties- Classification of materials: Quantum theory of paramagnetics- cooperative phenomena- magnetic domains, hysteresis.	Lecture Method
5	1 st May, 2020	9 th May, 2020	Revision and Solution of previous years' question papers	

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.

Other Methods adopted by the teacher – Please write the specific teaching method