Lesson Plan

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (Odd Semester/Even Semester) Session – (2021-22)

Name of the Teacher: <u>Dr. Pallavi Gupta</u>

Department: Physics Department

Odd Semester

Physics, Paper A

Class: B.Sc. III(NM, Voc) Subject: Condensed Matter Physics I

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity Undertaken*
	From	То	-	C W
1	11/08/2021	31/08/2021	Crystal structure: Symmetry operations for a two-dimensional crystal. Two dimensional Bravais lattices, Three dimensional Bravais lattices, Basic primitive cells, Crystal planes and Miller indices Diamond and NaCl structure. Crystal diffraction: Bragg's Law,	PPT, Lecture Method, Online Sources
2	01/09/2021	30/09/2021	Determination of crystal structure, Laue equations, Reciprocal lattices of SC, BCC and FCC, Bragg's law in reciprocal lattice, Brillouin zones and its derivation in two dimensions, structure factor and atomic form factor. Free electron theory of metals, effective mass, drift current, mobility and conductivity (carrier concentration and mobility of carriers)	Lecture Method (Blended From), Online Sources; Group Discussion
3	01/10/2021	31/10/2021	variation of carriers with temperature in semi- conductors, Fermi level positions in intrinsic and extrinsic semiconductors,	Lecture Method(Blended From), PPT, Online Sources

			Wiedemann-Franz law, Hall effect in metals and semiconductors.	
4	01/11/2021	30/11/2021	Band Theory of solids, periodic potential and Bloch theorem, Kronig-Penney model, band gaps, band structures in conductors, direct and indirect semiconductors and insulators, Numerical practise	Lecture Method, Online Sources; Group Discussion

Even Semester Paper A

Name of the Teacher: **Dr. Pallavi Gupta**

Department: Physics Department

Class: B.Sc. III(NM, Voc) Subject: Condensed Matter Physics II

S.No.	Date** (Monthly)		Topics to be Covered	Academic Activity Undertaken*
	From	To		
1	03/02/2022	28/02/2022	Lattice Dynamics: Lattice vibrations and phonons, Scattering of photons by phonons, Dynamics of a linear chain of similar atoms and chain of two types of atoms, optical and acoustic modes, Density of modes.	Lecture Method
2	01/03/2022	31/03/2022	Einstein and Debye theories of specific heats of solids. Magnetic classification of materials (Dia, para, ferro, ferri, antiferro), Langevin theory of dia and paramagnetism, Quantum theory, Weiss's theory of Ferromagnetism, temperature	Lecture Method, Online Sources; Group Discussion

			damandamaa layatamasia af	
			dependence, hysteresis of	
			ferromagnetic materials.	
3	01/04/2022	30/04/2022	Dielectric constant &	Lecture Method, Online
			polarizability, electric	Source
			susceptibility, Clausius	
			Mosotti equation, frequency	
			dependence, ferroelectrics	
			and Piezoelectrics. Liquid	
			crystals, various types and	
			properties. Applications.	
			Superconductivity: Meisner	
			effect, London's equation	
			and penetration depth,	
			critical magnetic field and	
			temperature	
4	01/05/2022	25/05/2022		Y
1 +	1 01/03/2022	1 25/05/2022	DC and AC Josephson effect.	Lecture Method, Online
7	01/03/2022	25/05/2022	DC and AC Josephson effect, BCS theory (formation of	
7	01/03/2022	25/05/2022	BCS theory (formation of	Sources; Group Discussion
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale:	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties,	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties, Nanoparticles, introduction	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties, Nanoparticles, introduction to fabrication and	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties, Nanoparticles, introduction to fabrication and characterization techniques,	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties, Nanoparticles, introduction to fabrication and characterization techniques, Carbon Nanostructures -	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties, Nanoparticles, introduction to fabrication and characterization techniques, Carbon Nanostructures nanotubes, grapheme.	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties, Nanoparticles, introduction to fabrication and characterization techniques, Carbon Nanostructures - nanotubes, grapheme. Applications of	
7	01/03/2022	25/05/2022	BCS theory (formation of cooper pairs), ground state and energy gap. Basic ideas of materials at nanoscale: Difference from bulk material properties, Nanoparticles, introduction to fabrication and characterization techniques, Carbon Nanostructures nanotubes, grapheme.	

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc. Other Methods adopted by the teacher – Please write the specific teaching method

^{**} Dates for even semester are tentative; they can be varied according to Panjab University Academic Calendar Dates.