(Lesson Plan)

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (Odd Semester) Session – (<u>2021-2022</u>)

Name of the Teacher Dr. Swati Khatta

Department	<u>Departm</u>	ent of Physics	
Class <u>B.Sc. I</u>	Subject	Mechanics-I	Section(s) <u>N.M & Vocational</u>

S.No.	(Monthly)		Topics to be Covered	Academic Activity Undertaken*	
	From	То			
1.	1 st Sept. 2021	30 th Sept. 2021	Cartesian and spherical polar coordinate, Two and Three dimensional coordinate systems.	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	
2.	1 st Oct. 2021	31 st Oct. 2021	Area, volume, displacement, velocity and acceleration of these systems and solid angle, Centre of mass, linear momentum and angular momentum. Torque, potential energy and kinetic energy of a system of particles.	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	
3.	1 st Nov. 2021	30 th Nov. 2021	Relationship of conservation laws of linear momentum, angular momentum and energy, and symmetries of space and time. Various forces in nature, relative strengths and spatial dependence, Motion under force obeying inverse square law, equivalent one body problem. Motion under central forces, equation of motion under central force, equation of orbit and turning points, Kepler's Laws.	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	
4.	1 st Dec. 2021	16 th Dec.2021	Elastic collision in Lab. and C.M. systems, Relationships of velocities, angles, and kinetic energies in these two systems, cross section of elastic scattering, Rutherford scattering	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (Even Semester) Session – (<u>2021-2022</u>)

Name of the Teacher Dr. Swati Khatta

DepartmentDepartment of PhysicsClass B.Sc. ISubjectMechanics-IISection(s)N.M & Vocational

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity Undertaken*	
	From	То			
1.	3 rd Feb.2022	28 th Feb.2022	Rigid Body motion; Rotational motion, principal moments and Axes, Euler's equations, precession and elementary gyroscope. Galilean transformations and Invariance, Transformation equations for inertial frames inclined to each other.	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	
2.	01 st Mar.2022	31 th Mar.2022	Non-Inertial frames. Fictitious forces in a rotating frames of reference, Centrifugal and Coriolis forces due to rotation of earth, Foucault's pendulum. Concept of stationery universal frame of reference and ether, Michelson-Morley experiment and its results.	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	
3.	01 st Apr. 2022	30 th Apr. 2022	Postulates of special theory of relativity, Lorentz transformations. Kinematical consequences of Lorentz transformations – length contraction and time dilation, Twin paradox, Transformation of velocities, Simultaneity of relativity, Velocity of light in moving fluid, Relativistic Doppler effect.	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	
4.	01 st May 2022	25 th May 2022	Variation of mass with velocity, mass-energy equivalence, rest mass in an inelastic collision, relativistic momentum & energy, their transformation, concepts of Minkowski space, four vector formulation.	 (i) Lecture method (ii) PPt (iii) Group discussion (iv) Notes (v) Numerical Problems 	