(Lesson Plan)

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (Odd/Even Semester) Session – (<u>2020-2021</u>)

Name of the Teacher: Dr. Gurjit Kaur Department: <u>Department of Physics</u>

Class: B.Sc. III (NM and Voc) Subject: Electronics and Solid State Devices-1 & 2 Section (s) A, B, Voc

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity					
	From	To		Unuertaken					
Odd semester									
1	11 th Sept	30 th Sept	Concepts of current and voltage	(i) I ecture method					
1.	2021	2021	sources, Thevenin's theorem,	(ii) Group discussion					
			conversion, CRO, Block diagram,	(iii) Notes (iv) Numerical					
			construction and principle of	Problems					
			working, Use of CRO for	(v) online material					
			frequency, time period, special						
			features of dual trace, phase						
	t at a	a cat a	measurements.						
2.	1^{st} Oct.	31^{st} Oct.	Energy band diagrams in	(i) Lecture method					
	2021	2021	semiconductors, Direct and	(ii) PPt					
			indirect semiconductors, Formula	(iii) Group discussion					
			lovel in p and p semiconductors	(IV) Notes (v) Numerical					
			Barrier formation energy hand	Problems					
			diagram of p-n junction Formula	(vi) online material					
			for Depletion width. Qualitative						
			ides of current flow mechanism in						
			forward and reverse biased diode,						
			V-I characteristics, static and						
			dynamic resistance, Depletion and						
			diffusion capacitance, zener diode,						
			LED, photodiode and solar cell.						
3.	1 st Nov.	30 th Nov.	Diode circuits, Clipping circuits,	(i) Lecture method					
2.	2021	2021	Rectification: half wave, full wave	(ii) PPt					
			and bridge rectifiers, filter circuits	(iii) Group discussion					
			(C, LC and π filters), rectification	(iv) Notes					
			efficiency and ripple factor in LC	(v) Numerical					
			filter, voltage regulation circuit	Problems					
			using zener diode, voltage						

			multiplier circuits, Bipolar					
			Junction transistors : Structure and					
			working, different currents in					
			transistor, switching action.					
			Characteristics of CB, CE and CC					
			configurations, Active, cutoff and					
			saturation regions, Load line					
			analysis of transistors, Q-point,					
			Transistor biasing and					
			stabilization of operating point,					
			fixed bias, collector to base bias,					
			bias circuit with emitter resistor,					
			voltage divider biasing circuit.					
			Working ans analysis of CE					
			amplifier using h-parameters,					
			current, voltage and power gain,					
			input and output impedance. Class					
			A, B and C amplifiers.					
Even Semester								
1.	3 rd Feb.	28^{th} Feb.	Diode circuits, Clipping circuits,					
	2022	2022	Rectification: half wave, full wave	(i)	Lecture method			
			and bridge rectifiers, filter circuits	(ii)	PPt			
			(C, LC	(iii)	Group discussion			
			and p filters), rectification	(iv)	Notes			
			efficiency and ripple factor in LC	(v)	Numerical			
			filter, voltage regulation circuit	Proble	ems			
			using zener diode,					
	t	4	voltage multiplier circuits.					
-	1 st	31 st	Bipolar Junction transistors :	(i)	Lecture method			
2.	March,2022	March,2022	Structure and working, different	(ii)	PPt			
			currents in transistor, switching	(iii)	Group discussion			
			action.	(iv)	Notes			
			Characteristics of CB, CE and CC	(v)	Numerical			
			configurations, Active, cutoff and	Proble	ems			
	a st	aost	saturation regions.	(V1) 01	nline material			
3.		30 st	Load line analysis of transistors,	(1)	Lecture method			
	April,2022	April,2022	Q-point, Transistor biasing and	(11)	Group discussion			
			stabilization of operating point,	(111)	Notes			
			fixed bias,	(1V)	Numerical			
			collector to base bias, bias circuit	Proble	ems			
			with emitter resistor, voltage					
4	1 st	DE St	uivider blasing circuit.		L a atawa			
4.		$25^{\circ\circ}$	working ans analysis of CE	(1)	Lecture method			
	May,2022	wiay,2022	ampinner using n-parameters,		Group discussion			
			current, vonage and power gain,		INOLES			
			impadance Class A D and C	(1V)	inumerical			
			amplifiers	riodie	tina matarial			
			ampimers.	(v) on	ime material			