Lesson Plan for (2022 -23)

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (Semester II) Session – (2022-23)

Name of the Teacher/s : Dr Neela Pawar, Dr Swati Sidana, Dr Leetika, Ms Chitra, Ms Promila

Department: Mathematics

Class B Sc I (SEM 2) Subject : Mathematics

Section (s) NM & Voc

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity Undertaken*	
	From	То	-	Chaertaken	
Solid Geometry	16 January	10 February	Transformation of Second degree equation, Sphere	Lecture method, discussions	
	11 February	15 march	Cylinder, Cone with vertex at origin	Assignments, Test	
	16 March	29 April	Cone continued, equations of ellipsoid, hyperboliad and paraboliad.	Discussion of exam pattern and previous question papers	
Calculus II	16 January	10 February	Real numbers, Limits, Continuity	Introduction of syllabus, exam pattern, doubt sessions	
	11 February	15 march	Rolle's , Lagranges, Cauchy's Taylor's Theorem	Extra questions, MST	
	16 March	29 April	Maclaurin's theorems and applications, Hyperbolic Functions, successive differentiation	Revision of few selected topics, Discussion od previous question papes	
Theory of equations	16 January	10 February	Euclid's algorithm, synthetic division, complex roots, Relations between roots and coefficients,	Lecture, Assignments, Test	
	11 February	15 march	transformation of Eqns, Descartes rule of signs, Newton's method of divisors	Quiz, discussion,	
	16 March	29 April	Cardon method, Biquadratic eqns.		
Departmental Meeting to Coordinate and Review the Monthly completion of Syllabus was held after each unit of lesson plans					

Lesson Plan 2022-23

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (Semester 4) Session – 2022-23

Name of the Teacher/s : Dr Neela Pawar, Dr Swati Sidana, Dr Manisha, Dr Navjot Kaur, Ms Promila, Ms Chitra Department: Mathematics

Class B A/ B Sc II (Semester 4) Subject: Mathematics

Section (s) NM, Voc

S.No.	Date		Topics to be Covered Academic Activity		
	(M	Ionthly)		Undertaken*	
	From	То			
Advanced Calculus II	16 January	10 February	Sequences, sub Sequences		
	11 February	15 march	Sequential and uniform Continuity, Series, p test, Comparison test, Cauchy's Integral and root test, Ratio Test		
	16 March	29 April	De Morgan test, Gauss test, log test, Leibnitz theorem, Absolute and conditional convergence, Riemann's arrangements.		
	161	10 5 1			
Differential	16 January	10 February	Laplace and inverse Laplace		
equations n	11 February	15 march	Applications of Laplace		
	TTreordary	15 march	transformations, Partial Differential eqns		
	16 March	29 April	Series solutions , Bessels and Legendre's eqns and solutions		
Dynamics	16 January	10 February	Motion of a particle with constant acceleration, falling bodies, law of motion, motion of two particle connected with string, motion along a plane		
	11 February	15 march	Variable acceleration, SHM, elastic string, curvilinear motion,		
	16 March	29 April	Work , power, energy, Relative motion, momentum, collision of elastic bodies.	por lasson plans	
D	epartmentar Meet	ing was neid to Kev	lew me monumy completion of Synabus as	per resson plans	

Lesson Plan 2022-23

Mehr Chand Mahajan DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (**Semester 6**) Session – 2022-23

Name of the Teacher/s: Dr Swati Sidana, Dr Leetika, Dr Navjot Kaur, Ms Promila, Dr Nisha Sharma, Dr Manisha, Ms Chitra

Department : Mathematics

Class	BA/B	Sc III	Sem 6	Subject: Mathematics
-------	------	--------	-------	----------------------

Section (s) NM A, B & Voc

S.No.	Date (Monthly)		Topics to be Covered	Academic Activity Undertaken*		
	From	То				
Analysis II	16 January	10 February	Double and triple integrals,			
	11 February	15 march	Vector Calculus, Sequences and Series of functions,			
	16 March	29 April	Power Series, Fourier Series			
Linear Algebra	16 January	10 February	Vector Space, Subspaces, Basis and Dimensions			
	11 February	15 march	Linear transformation, rank and Nullity, linear transformation and matrices			
	16 March	29 April	Characteristic roots and vectors, Cayley Hamilton theorem, Diagonalizable operators and matrices			
Numerical Analysis	16 January	10 February	Solution of equations, Interpolation, Numerical Differentiation,			
	11 February	15 march	Numerical Quadrature, Linear equations,			
	16 March	29 April	The Algebraic Eigen value Problems, Ordinary Differential equations			
Departm	Departmental Meeting to Coordinate and Review the Monthly completion of Syllabus as per lesson plans					

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans Session – 2022-23

Department: Mathematics Class: M Sc I Semester 2

Subject : MATH 624S Complex Analysis II Name of the Teacher: Dr Neela Pawar

S.No.	S.No. Dates (Monthly)		Topics to be Covered	Academic Activity Undertaken*	
	From	То			
1	16	10	Maximum module principle, Taylor and	Doubt Session, Examination	
	January	February	laurants, series, Calculus of Residue,	pattern discussed, Test	
				Conducted	
2	11	15	Bilinear transformation, Zeroes and poles	Doubt session, Assignments	
	February	march	of meromorphic functions, Conformal	provided	
			mappings, Infinite products	Mid Term Test	
3	16	29 April	Weirestrass and Mittaglefer's theorems,	Doubt session, Assignments,	
	March		Analytic continuation, Gamma and Riemann	Question papers discussed.	
			Zeta functions.	Revision of a few topics.	
	1			ł	
S	ubject: MA	TH 6215 R	eal Analysis-II Name of the Teacher: Dr Nisha Sh	arma	
1	16	10	Differentiation of vector-valued function,	Syllabus intimation,	
	January	February	Space of linear transformations as a metric	Examination Pattern, marking	
			spaces, Differentiation of vector-valued	scheme discussed, Doubt	
			function of several variables, Inverse function	sessions	
			theorem, Implicit function theorem, Outer		
			measure, Measurable sets and Lebesgue		
			measure, Non-measurable set		
2	11	15	Measurable functions, Littlewood's three	Assignments, tests, Mid Term	
	February	march	principles, Lebesgue Integral of bounded	Examination	
			function over a set of finite mesure, Lebesgue		
			Integral of non-negative function, General		
			Lebesgue Integral		
3	16	29 April	Convergence in measure, Differentiation of	Doubt session, Assignments,	
	March	_	monotone function, Differentiation of an	Ouestion papers discussed.	
			integral, Absolute continuity, Convex	Revision of a few topics.	
			functions	1	
Sub	iect · MATE	I 6228 Ala	abra-II Name of the Teachers Dr Sonica		
1		10225 Alg	Eastorization theory in Internal Demoins	Doubt Session Examination	
1	IO	February	Protorization theory in Integral Domains,	Doubt Session, Examination	
	January	reordary	Divisibility, UFD, PID, ED and their	pattern discussed, Test	
			relationship, Noetherian and Artiman	Conducted	
			rings, examples and counter examples,		
	11	15	Artinian rings without zero divisors.		
2	11 February	15 marah	Nil ideals in Artinian rings, Hilber I Basis	Doubt session, Assignments	
	rebluary	march	theorem, Modules, Difference between	provided	
			Modules and Vector spaces, Module	Mid Term Test held	
			Homomorphism, Quotient module,		
			Completely reducible and semi simple		
			module.		
3	16	29 April	Free Modules, Representation and Rank of	Doubt session, Assignments.	
	March		linear mappings, Smith normal form over a	Question papers discussed.	
			PID, Finitely generated modules over a	Revision of a few topics.	

			PID,Rational Canonical form,Applications to finitely generated abelain groups.	
Subject	t: MATH 62	23S Vector	Dr Manisha	
1	16 January	10 February	Scalar and Vector point function, Differentian and integration, Gradient, Curl and divergence operators and their applications, Green's theorem. Stoke's theorem, Gauss Divergence theorem and its applications.	Doubt Session, Examination pattern discussed, Test Conducted
2	11 February	15 march	Curvilinear co-ordinates, Generalized co- ordinates, Generalized acceleration, Generalized moments, Lagrange equation of motion and its applications, Variation principles for higher order and several variables.	Doubt session, Assignments provided Mid Term Test held
3	16 March	29 April	Hamilton canonical equation, Hamiltonian principle of least action, Reduction to the equivalent one body problem,Viral theorem,Rigid body motion about an axis,about a moving axis, The equation of motion and first integral, Classification of orbits.	Doubt session, Assignments, Question papers discussed. Revision of a few topics.
Su	bject: MA'	TH 625S	Number Theory -II Name of the Teacher: Dr Leet	ika
1	16 January	10 February	Farey sequences, Continued fractions, Approximation of reals by rationals, Pell's equations, Minkowski's theorem and its applications,	Doubt Session, Examination pattern discussed, Test Conducted, Assignments provided
2	11 February	15 march	Partitions, Order of magnitude and average order of arithmetic functions, Euler summation formula	Doubt session, Assignments provided Mid Term Test held
3	16 March	29 April	Abel's Identity, Elementary results on distribution of primes.	Doubt session, Assignments, Question papers discussed. Revision of a few topics.

Departmental Meeting was held after the completion of every month to review the syllabus distribution

Lesson Plan for (2022-23)

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans Session – 2022-23

Department: Mathematics Class: M. Sc. 2 Semester- 4

	Subject :MATH-69		S : Non-Linear Programming Name of the Teacher : Dr. Naviot Kau	r
S.	Dates (Monthly)		Topics to be Covered	Academic Activity Undertaken*
N.	From	То		
1	16 January	10 February	Nonlinear Programming, Minima and Maxima of convex function and concave functions. Generalizations of convex functions and their basic properties, Unconstrained problems, Fritz John conditions and Kuhn-Tucker conditions	Doubt Session, Examination pattern discussed, Test Conducted , Assignments provided
2	11 Februar y	15 march	Duality in Nonlinear Programming, Quadratic Programming, Linear fractional programming, Nonlinear fractional programming, Dinkelbach's approach	Doubt session, Assignments provided Mid Term Test
3	16 March	29 April	Game theory - Two-person, Zero-sum Games with mixed strategies, graphical solution, solution by Linear Programming.	Doubt session, Assignments, Question papers discussed. Revision of a few topics.
s	ubject: MA	TH-681S : P	robability and Mathematical Statistics-II Name of the Teacher: Ms. (Chitra
1	16 January	10 February	Point estimation, unbiasedness, consistency, efficiency and Sufficiency. Factorization theorem, completeness, Rao- Blackwell theorem, Cramer-Rao inequality. Maximum likelihood method of estimation and method of moments. Interval estimation, confidence intervals for means, difference of means and variances.	Syllabus intimation, Examination Pattern, marking scheme discussed, Doubt sessions
2	11 Februar y	15 march	The basic idea of significance test. Null and alternative hypothesis, Type-I and TypeII errors. Uniformly most powerful tests, Likelihood Ratio tests. T, Chi-square and F- distributions. Tests of significance based on t, Chi-square and F Distribution	Assignments, tests, Mid Term Examination
3	16 March	29 April	One way and two way Analysis of Variance (ANOVA). Non-Parametric Tests: Sign test, Wilcoxon signed rank test, Mann-whitney test.	Doubt session, Assignments, Question papers discussed. Revision of a few topics.
	Subject:	MATH-638	S : Functional Analysis Name of the Teacher: Dr. Sonica	
1	16 January	10 February	Banach Spaces with examples of LP ([a,b]) and C ([a,b]), Hahn Banach theorem, open mapping theorem, closed graph theorem, Baire Category theorem,	Doubt Session, Examination pattern discussed, Test conducted, taken few presentations
2	11 Februar y	15 march	BanachSteinhauns theorem (uniform boundedness principle), Boundedness and continuity of linear transformation, Dual Spaces, embedding in second dual	Doubt session, Assignments provided Mid Term Test held
3	16 March	29 April	Hilbert space, orthonormal basis, Bessel's inequality, Riesz Fischer theorem, Parseval's identity, bounded Linear functionals; projections, Riesz Representation theorem,	Doubt session, Assignments, Question papers discussed. Revision of a few topics.

			adjoint operators, self adjoint, normal, unitary and isometric operators		
	Subject	МАТН-6378	. Linear Algebra Name of the Teacher: Dr. Swati Sidan	19	
1	16 January	10 February	Vector Spaces-definition and examples, subspaces, direct sum of subspaces, linear dependence and independence, basis and dimension ,quotient spaces, linear transformation ,Algebra of linear transformation	Dou patte Con	bt Session, Examination ern discussed, Test ducted
2	11 Februar y	15 march	Linear functions, dual spaces, rank and nullity of linear transformation ,invariant subspaces, Linear transformation— eigen values and eigen vectors, Characteristic polynomial and minimal polynomial,	Dou pres Test	bt session, Students entation taken, Mid Term
3	16 March	29 April	Diagonalization and triangularization of a matrix, Jordan and Rational canonical forms, bilinear spaces, symmetric bilinear form, Sylvester's Theorem, quadratic forms, Hermitianforms, Inner product spaces, Gram-Schmidt orthonormalization process	Dou Que Rev	bt session, Assignments, stion papers discussed. ision of a few topics.
	Subject :	MATH-6968	S: Fluid Mechanics-II Name of the Teacher: Dr. Nisha Sha	rma	Γ
1	16 January	10 February	Viscous Flows: Stress components, Stress and strain ter coefficient of viscosity and Laminar flow, plane Poiseu flows and Couette flow. Flow through tubes of uniform cross section in the form of circle, Ellipse, equilateral triangle, annulus, under constant pressure gradient	isor, ille	Course Teaching, Assignments, Doubt session wi discussions
2	11 Februar y	15 march	Diffusion of vorticity. Energy dissipation due to viscosi steady flow past a fixed sphere, dimensional analysis, Reynold numbers, Prandtl's boundary layer, Boundary layer equation in two dimensions, Karman integral equation.	ty,	Mid. Term , Presentations, Assignments
3	16 March	29 April	Elements of wave motion, waves in fluids, surface gravity waves, standing waves, dispersion relation, path of particles, waves at the interface of two liquids, equipartition of energy, group velocity, energy of		Class tests, Previous year QP discussions, Projects, Doubts taking, Presentations
Su	l bject : MAT	TH-672S : Co	mputational Techniques-II Name of the Teacher: Dr. M	[anish:	a, Ms Anupreet Kaur
	-				
1	16 January	10 February	MS Excel: Introduction, Functions and Formulae, Graph and Data base. Numerical Differentiation, Numerical Integration: Gene formulae, Trapeziodal rule, Simpson's 1/3 and 3/8 rule, Romberg integration, Newton-Cotes formulae, Gaussian integration.	hics eral n	Course Teaching, Assignments, Doubt session wi discussions Programming and Practical Sessions
			Writing programs in C for the problems based on the methods studied in theory paper and to run the program PC.	of	

2	11	15	Programming in C: Historical development of C, Character	Mid. Term, Presentations,
	Februar	march	set, Constants, Variables, Keywords, Operators, Hierarchy	Assignments
	У		of arithmetic operations, if and if-else statements, Logical	Programming and Practical
			and Conditional Operators, Switch structure, while	Sessions
			structure, do-while and for-Loops, Nested loops,	
			Solution of Ordinary Differential Equations: Taylor's	
			series, Picard method of Successive approximations,	
			Euler's method, Modified Euler's method, Runge Kutta	
			Method-2nd and 4th order, Predictor-Corrector methods,	
			Milne-Simpson's method, Adam's – Bashforth method,	
			Finite difference method for boundary value problems.	
			Writing programs in C for the problems based on the	
			methods studied in theory paper and to run the program of	
			PC.	
3	16	29 April	Break and Continue statements, Arrays, Functions, Print	Class tests, Previous year QP
	March		Function, Function Declaration and Function Prototype,	discussions, Projects, Doubts
			Return Statement, Local and Global Variables, Passing	taking, Presentations
			Arrays as parameter, Recursion and Library Functions,	Programming and Practical
			Files in C, Introduction to pointers, Simple programs.	Sessions
			Approximation of functions: Chebyshev Polynomials,	
			Orthogonality of Chebyshev polynomials, Lanczos	
			Economization of Power series.	
			Writing programs in C for the problems based on the	
			methods studied in theory paper and to run the program of	
			PC.	

Departmental Meeting was held after the completion of every month to review the syllabus distribution.