Lesson Plan

MCM DAV College for Women, Sector – 36 A, Chandigarh Monthly Teaching Plans (Odd Semester)

Session: 2025-26

Name of the Teacher: Dr. Shefali Dhiman, Dr. Sagarika Dev, Dr. Qudrat

Hundal

Department: Chemistry

Class: B.Sc (1st Semester) Subject: Chemistry

S.No.	Date (Monthly)			Academic Activity Undertaken*
	From	То		
1.	24-07-2025	30-08-2025	INORGANIC CHEMISTRY Atomic Structure: Idea of de-Broglie matter waves, Heisenberg uncertainty principle, atomic orbitals, Schrodinger wave equation, the significance of ψ and ψ 2, quantum numbers, radial and angular wave functions (excluding mathematical relations), probability distribution curves, shapes of s , p , and d orbitals. ORGANIC	Lecture
			CHEMISTRY Structure and Bonding: Hybridisation, Bond	

			lengths and bond Angles, Bond Energy, Localised and Delocalized chemical bond, Van der Waal's interaction, Resonance and Resonance effect, Hyperconjugation, Inductive and Field effect, Electromeric effect, Hydrogen Bonding. PHYSICAL CHEMISTRY Basic Concepts of Mathematics: Logarithmic relations,	
			differentiation and integration of functions like e ^x , x ⁿ , sin x, and log x. Terms of mean and median, precision and accuracy in chemical analysis.	
			Chemical Kinetics-I: Chemical kinetics and its scope, rate of a reaction, factors influencing the rate of a reaction-concentration, temperature, pressure, solvent, light, and catalyst. Concentration dependence of rates	
2.	01-09-2025	30-09-2025	INORGANIC CHEMISTRY	Lecture and discussion
			Atomic Structure: Aufbau and Pauli exclusion principles, Hund's multiplicity rule, Electronic configurations of the elements and ions. Periodic Properties: Position of elements in the	

periodic table, effective nuclear charge and its calculations, Atomic and ionic radii, ionisation energy

<u>ORGANIC</u> <u>CHEMISTRY</u>

Reactive Intermediates:

Curved arrow notation, Drawing electron movements with arrows, half-headed and doubleheaded arrows, homolytic and heterolytic bond breaking, Types of Reagents – Electrophiles and nucleophiles, Types of Organic Reactions. Reactive intermediates-Carbocations, Carbanions, Free Radicals, Carbenes, Arynes and Nitrenes (with examples). Assigning Formal charges on intermediates and other ionic species

<u>PHYSICAL</u> <u>CHEMISTRY</u>

Chemical Kinetics-I

mathematical characteristics of simple chemical reactions – zero order, first order, second order, pseudo order, half-life, and mean life.

Determination of the order of reaction – differential method, method of integration, method of half-life period and isolation method,

	1	T	T= 4	
			Radioactive decay as a	
			first-order phenomenon.	
			Chemical Kinetics-II:	
			Theories of Chemical	
			Kinetics: Effect of	
			temperature on rate of	
			reaction, Arrhenius	
			equation, concept of	
			activation energy, Simple	
			collision theory based on	
			hard sphere model,	
			transition state theory	
			(equilibrium hypothesis),	
			Expression for the rate	
			constant based on	
			equilibrium constant and	
			thermodynamic aspects.	
3.	01-10-2025	31-10-2025	INORGANIC	Lecture
			CHEMISTRY	
			Periodic Properties:	
			electron affinity and	
			electronegativity-	
			definition, methods of	
			determination or	
			evaluation.	
			<u>ORGANIC</u>	
			<u>CHEMISTRY</u>	
			Geometrical isomerism:	
			Cause and conditions for	
			geometrical isomerism,	
			Nomenclature of	
			geometrical isomers- cis	
			and trans, E and Z system,	
			Determination of	
			configuration of	
			geometrical isomers.	
			Conformational	
			Isomerism:	
			Representation of	
			conformations - Sawhorse	

	1	T	131 0 1	
			and Newman formulae,	
			Conformational analysis of	
			ethane, propane, n-butane,	
			cyclohexane, Equatorial	
			and Axial bonds.	
			Conformations of Mono	
			and di-substituted	
			derivatives of	
			cyclohexanes.	
			<u>PHYSICAL</u>	
			<u>CHEMISTRY</u>	
			Chemical Kinetics-II:	
			Catalysis and general	
			characteristics of catalytic	
			reactions, Homogeneous	
			catalysis, acid-base	
			catalysis and enzyme	
			catalysis, including their	
			mechanisms. Michaelis-	
			Menten equation for	
			enzyme catalysis and its	
			mechanism.	
4.	01-11-2025	10-11-2025	INORGANIC	Lecture and group
			<u>CHEMISTRY</u>	discussion
			Periodic Properties:	
			Trends in the periodic	
			table and applications in	
			predicting and explaining	
			the chemical behaviour.	
			<u>ORGANIC</u>	
			<u>CHEMISTRY</u>	
			Conformations of Mono	
			and di-substituted	
			derivatives of	
			cyclohexanes.	
			PHYSICAL CHEMISTRY	
			Chamical Vinetica II.	
			Chemical Kinetics-II:	
			Chemical Kinetics-II: Michaelis-Menten equation for enzyme	

-			
		catalysis and its	
		mechanism.	

Departm	ental Meeting to Coordinate and Review the Monthly completion of Syllabus as per		
lesson plans			
27 th	The teachers have completed the scheduled chapters and topics as shown in the lesson		
August,	plan		
2025			
Departmenta	al Meeting to Coordinate and Review the Monthly completion of Syllabus as per		
lesson plans			
24 th Sept,	The teachers have completed the scheduled chapters and topics as shown in the lesson		
2025	plan		
Departmenta	al Meeting to Coordinate and Review the Monthly completion of Syllabus as per		
lesson plans			
29 th Oct,	The teachers have completed the scheduled chapters and topics as shown in the lesson		
2025	plan		
Departmenta	al Meeting to Coordinate and Review the Monthly completion of Syllabus as per		
lesson plans			
10 th Nov, 20	25 The teachers have completed the scheduled chapters and topics as shown in the		
	lesson plan		

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.Other Methods adopted by the teacher – Please write the specific teaching method