(Lesson Plan) ODD

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (<u>Odd Semester</u>) Session – (2024-25)

Name of the Teacher: <u>Dr. Kulwinder Kaur and Dr. Monika</u>

Department: Physics

Class: B.Sc (II)

Subject: <u>Quantum Physics(I)</u>

Section (s): <u>Non-Medical, Vocational</u>

S.No	Date (Monthly)		Topics Covered	Academic Activity Undertaken*	
	From	То			
1	15 th July, 2024	31 th August,2024	 ✓ De Broglie waves, ✓ wave packet, ✓ Phase velocity and Group velocity, ✓ Electron microscope, ✓ Particle diffraction ✓ Davisson-Germer experiment, ✓ Uncertainty principle with illustrations, ✓ Principle of complementarity. 	 ✓ Lecture using board and ppt in classroom ✓ Group Discussion ✓ Online animations for concept clarity 	
2	1 st September ,2024	30 st September,2024	 ✓ Quantum mechanics, Wave equation, ✓ Plausible arguments leading to time- dependent Schrodinger equations, Born's interpretation of Wave 	 ✓ Lecture using black board in classroom, ✓ Oral questions ✓ Numerical Problems 	

			function, complex character, continuity and boundary conditions, probability interpretation, normalization, ✓ Probability current, Probability conservation equation, ✓ Principle superposition.	
3	1st October,2024	15 th October,2024	 ✓ Fundamental postulates of quantum mechanics. ✓ Eigen values and Eigen functions. ✓ Operator formalism, Position, momentum and energy operators, ✓ expectation values, ✓ Ehrenfest theorem, Hermitian operators ✓ Steady-state Schrodinger equation ✓ Application to stationary states for one dimension, 	 ✓ Lecture using black board in classroom, ✓ Assignments ✓ Oral Tests
4	16 th October,2024	18th Nov,2024	 ✓ .Potential step, potential barrier, Tunnel effect examples, Scanning Tunneling microscope, ✓ Rectangular potential well, linear harmonic oscillator. Schrödinger equation for spherically symmetric potential, ✓ Spherical harmonics, Hydrogen atom ✓ Energy levels and Eigen functions, ✓ Principal, Orbital and Magnetic quantum numbers, 	 ✓ Lecture using black board in classroom ✓ Online sources ✓ Group Discussions

		✓ Electron probability density.

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.

Other Methods adopted by the teacher – Please write the specific teaching method

EVEN (Lesson Plan)

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans (<u>Even Semester</u>) Session – (2024-2025)

Name of the Teacher: Dr. Kulwinder Kaur and Dr. Monika

Department: Physics

Class: B.Sc (II)

Subject: Quantum Physics (II)

Section (s): Non-Medical, Vocational

S.No	Date (Monthly)		Topics Covered	Academic Activity Undertaken*
	From	To		
1	10 th Jan. 2025 (Tentative)	31 st Jan,2025	 ✓ Radiative transitions, selection rules and life times, ✓ Spectrum of hydrogen atom. ✓ Normal Zeeman effect and experiment, Degeneracy of H-atom energy levels, fine structure, ✓ Electron angular momentum, Larmor's frequency, electron spin angular momentum, ✓ Exclusive principle, Stern- Gerlach experiment. 	✓ Lecture using black board in classroom, ✓ Oral questions ✓ Numerical Problems ✓
2	1 st Feb,2025	28 th Feb,2025	✓ Spin-orbit coupling, electron magnetic moment, total angular momentum,	✓ Lecture(using black board in classroom,

			 ✓ Hyperfine structure, examples of one electron systems ✓ Anomalous Zeeman Effect, Lade-g factor (sodium D-lines). ✓ Paschen-Back Effect, Stark Effect. ✓ Symmetric and Ant symmetric wave functions, ✓ Exclusion principle, Many electron atoms, Slater determinant, ✓ Electronic configurations, Hund's rule, Spin-Orbit coupling 	✓ Group Discussions
3	1 st March,2025	31 st March,2025	 ✓ L-S coupling, J-J couplings, term symbols. ✓ Atomic spectra of H, Na, He and Hg, ✓ Selection rules. ✓ X-ray spectra, nomenclature, Selection rules, ✓ Mosley law, Auger Effect ✓ Molecular bonding, H2 + ion and H2 molecules, Complex molecules, molecular spectra, selection rules, symmetric structures, 	 ✓ Lecture (using black board) in classroom, ✓ Assignments ✓ Oral Tests ✓ Group Discussions
4	1 st April,2025	15 th April, 2025	 ✓ Rotational vibration levels and spectra of diatomic molecules, ✓ Vibration-Rotational spectra, Electronic spectra of molecules, 	✓ Lecture using black board in classroom✓ Group Discussions

				✓ Quiz
5	16 th April, 2025	26 th April, 2025	 ✓ Franck Condon principle, fluorescence and phosphorescence, ✓ Raman Effect, ✓ Magnetic resonance experiments. 	 ✓ Lecture using black board in classroom ✓ Group discussion ✓ Notes ✓ Numerical Problems

^{*}Any of these – (i) Lecture Method; (ii) PPT; (iii) Online Sources; (iv) Group Discussion; (v) Case Studies etc.

Other Methods adopted by the teacher – Please write the specific teaching method