Monthly Teaching Plan

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans-Odd Semester (Semester-III) Session – 2025-26

Department: Mathematics

Class: B.Sc.-II (NM &Voc.)/B.A.-II Subject:MAT DSC3(MAJ/MIN): Theory of Equations

Name of the Teachers: Dr Swati Sidana, Dr Komal Bansal

Month	Date		Topics to be covered	Academic Activity to be Undertaken
	From	To		
July	24.07.2025	31.07.2025	Polynomials (definition and examples), Euclid's algorithm, synthetic division, common divisors, G.C.D. of polynomials.	Syllabus, Examination pattern discussed, Doubt Session.
_	ntal Meeting to s on 30.07.2025		and Review the Monthly completion of	f Syllabus as per
August	01.08.2025	31.08.2025	Roots of a polynomial equation, repeated roots and their multiplicity, common roots. Fundamental theorem of Algebra, Factor theorem, Complex roots of real polynomials occur in conjugate pairs with same multiplicity. Irrational roots of polynomials over rationals occur in conjugate pairs with same multiplicity. Relation between roots and coefficients, Vieta's formulae,	Doubt session, Revision of a few topics and class test.
Departmen	 tal Meeting to	 Coordinate a	symmetric functions and Review the Monthly completion of	Syllabus as per
_	s on 27.08.2025		• •	•
September	01.09.2025	30.09.2025	diminishing roots of a polynomial equation by h and its application, Solution of a cubic when its roots are in A.P. / G.P., solution of a biquadratic when its roots are in A.P. (respect. in G.P.) and sum (resp. product) of two roots is given, Descartes' Rule of Signs, Newton's method of divisors for integral roots.	Doubt session, Assignments. Revision of a few topics.
	ital Meeting to s on 24.09.2025		and Review the Monthly completion of	f Syllabus as per
October	01.10.2025	31.10.2025	Transformation of equations: Transform the given polynomial equation into another such that signs of the roots changed, roots multiplied by a constant, roots are symmetric functions of the	Doubt session, class test/Assignments.

			roots of the original equation. Solutions			
			of cubic and bi-quadratic equations			
			when their roots are in H.P.			
Departmental Meeting to Coordinate and Review the Monthly completion of Syllabus as per						
lesson plans	lesson plans on 29.10.2025					
November	01.11.2025	13.11.2025	Cardan's method and trigonometric methods for solving cubic equations. Discriminant and nature of roots, of a real cubic equation. Descartes' and Ferrari's method of solving a biquadratic equation.	Doubt session, Question papers discussed. Revision tests.		
Departmenta plans on 12.1	0	ordinate and	Review the Monthly completion of Syllab	ous as per lesson		
-	Examination 1	4.11.2025 to 2	26.12.2025			

Lesson Plan

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans-Even Semester (Semester-IV) Session – 2025-26

Department: Mathematics

Class: B.Sc.-II (NM &Voc.)/B.A.-II Subject:MAT DSC4(MAJ/MIN): Calculus-II

Name of the Teachers: Dr Swati Sidana, DrKomal Bansal

	Name of the	ie Teachers	: Dr Swati Sidana, DrKomal Bansa	ļI
Month	Date		Topics to be covered	Academic Activity to be Undertaken
	From	To		
January	10.01.2026	31.01.2026	Concavity, convexity, points of inflexion, multiple points, double points and its types for curves ina plane. Tangents at origin, asymptote and its types, methods for finding asymptotes of rationalalgebraic curves. Special methods for finding oblique asymptotes of rational algebraic curves. Intersection of a curve and its asymptotes.	Syllabus, Examination pattern discussed, Doubt Session.
Departmen	tal Meeting to	Coordinate a	and Review the Monthly completion o	f Syllabus as per
lesson plan	s on 28.01.2026	<u> </u>		
February	01.02.2026	28.02.2026	Introduction to the polar coordinate system, tracing of curves represented by equations in Cartesian coordinates, Polar coordinates, and in parametric forms. Curvature and radius of curvature, at a point, of curves in Cartesian and Polar Co-ordinates including parametric forms as well as curves represented by equation $f(x, y) = 0$ implicitly.	Doubt session, Assignments, Class tests.
Departmen	tal Meeting to	Coordinate a	and Review the Monthly completion o	f Syllabus as per
-	s on 25.02.2026		y	- 10 J 10 10 P
March	01.03.2026	31.03.2026	Integral calculus: Integration of hyperbolic and inverse hyperbolic functions. Reduction Formulae for following integrals.	Doubt session, Assignments. Class tests.
_			and Review the Monthly completion o	f Syllabus as per
	s on 25.03.2026	_	T	T =
April	01.04.2026	25.04.2026	Numerical Integration: Trapezoidal, Prismoidal and Simpson Rules. Application of definite integral:Summation of Series, Quadrature, rectification, volumes and surfaces of solids of revolution (Cartesian co-ordinates only)	Doubt sessionand tests. Question papers discussed. Revision of the topics important from examination point of view.
Department plans on 22.		oordinate and	Review the Monthly completion of Syllal	ous as per lesson
1	er Examination 2			

Lesson Plan

MCM DAV College for Women, Sector – 36A, Chandigarh Monthly Teaching Plans-Even Semester (Semester-III/IV) Session – 2025-26

Department: Mathematics

Class: B.Sc.-II (NM &Voc.)/B.A.-II Subject: MAT DSC3(MAJ/MIN)-302: Differential Equations-I

Name of the Teachers: Dr Sonica

on 30.07.20 1.08.2025	31.08.2025	Exact differential equations: Necessary and sufficient condition for a differential equation of the type $M(x, y) dx + N(x, y) dy = 0$ to be exact. Integrating factor of a D.E. and methods to find it. te and Review the Monthly completion of S Homogeneous linear differential equations with constant coefficients and its solutions. Theorems for finding particular integrals $\frac{1}{D-a}f(x), \frac{1}{f(D)}e^{ax}, \frac{1}{f(D)}e^{ax}V(x), \frac{1}{f(D^2)}\sin x,$ $\frac{1}{f(D^2)}\cos x, \frac{1}{f(D)}xV(x), \frac{1}{f(D)}x^n; n is the non-negative integer. Non-homogeneous linear differential equations with constant coefficients and its solutions.$	Academic Activity to be Undertaken Syllabus, Examination pattern discussed, Doubt Session. yllabus as per Doubt session, Revision of a few topics and class test.
1.07.2025 1 Meeting on 30.07.20 1.08.2025	31.07.2025 to Coordina 025 31.08.2025	sufficient condition for a differential equation of the type $M(x, y) dx + N(x, y) dy = 0$ to be exact. Integrating factor of a D.E. and methods to find it. Ite and Review the Monthly completion of S Homogeneous linear differential equations with constant coefficients and its solutions. Theorems for finding particular integrals $\frac{1}{D-a}f(x), \frac{1}{f(D)}e^{ax}, \frac{1}{f(D)}e^{ax}V(x), \frac{1}{f(D^2)}\sin x, \frac{1}{f(D^2)}\cos x, \frac{1}{f(D)}xV(x), \frac{1}{f(D)}x^n; n is the non-negative integer. Non-homogeneous linear differential equations with constant$	Examination pattern discussed, Doubt Session. yllabus as per Doubt session, Revision of a few topics and class
I Meeting on 30.07.20 1.08.2025	to Coordina)25 31.08.2025	sufficient condition for a differential equation of the type $M(x, y) dx + N(x, y) dy = 0$ to be exact. Integrating factor of a D.E. and methods to find it. Ite and Review the Monthly completion of S Homogeneous linear differential equations with constant coefficients and its solutions. Theorems for finding particular integrals $\frac{1}{D-a}f(x), \frac{1}{f(D)}e^{ax}, \frac{1}{f(D)}e^{ax}V(x), \frac{1}{f(D^2)}\sin x, \frac{1}{f(D^2)}\cos x, \frac{1}{f(D)}xV(x), \frac{1}{f(D)}x^n; n is the non-negative integer. Non-homogeneous linear differential equations with constant$	Examination pattern discussed, Doubt Session. yllabus as per Doubt session, Revision of a few topics and class
on 30.07.20 1.08.2025	31.08.2025	Homogeneous linear differential equations with constant coefficients and its solutions. Theorems for finding particular integrals $\frac{1}{D-a}f(x), \frac{1}{f(D)}e^{ax}, \frac{1}{f(D)}e^{ax}V(x), \frac{1}{f(D^2)}\sin x, \frac{1}{f(D^2)}\cos x, \frac{1}{f(D)}xV(x), \frac{1}{f(D)}x^n; n \text{ is the non-negative integer. Non-homogeneous linear differential equations with constant}$	Doubt session, Revision of a few topics and class
1.08.2025	31.08.2025	with constant coefficients and its solutions. Theorems for finding particular integrals $\frac{1}{D-a}f(x), \frac{1}{f(D)}e^{ax}, \frac{1}{f(D)}e^{ax}V(x), \frac{1}{f(D^2)}\sin x,$ $\frac{1}{f(D^2)}\cos x, \frac{1}{f(D)}xV(x), \frac{1}{f(D)}x^n; n \text{ is the non-negative integer. Non-homogeneous linear differential equations with constant}$	Revision of a few topics and class
		L COCILICIONICO MING IND DOIMHUID.	
		te and Review the Monthly completion of S	yllabus as per
n 27.08.20		I	- · · · · · · · · · · · · · · · · · · ·
1.09.2025	30.09.2025	First order and higher degree differential equations solvable for x, y, $p = \frac{dy}{dx}$. Clairaut's form and equations reducible to Clairaut's form. Singular solution as an envelope of general solutions. Geometrical meaning of a differential equation, orthogonal trajectories. Limit and continuity of functions of two and three variables.	Doubt session, Assignments. Revision of a few topics.
_		te and Review the Monthly completion of S	yllabus as per
1.10.2025	31.10.2025	Partial differentiation up to second order. Total differential, differentiation of composite and implicit functions. Euler's Theorem on homogeneous functions, differentiability of real-valued functions of two and three	Doubt session, class test/Assignments.
n	24.09.20	24.09.2025	Meeting to Coordinate and Review the Monthly completion of S 24.09.2025 10.2025 Partial differentiation up to second order. Total differential, differentiation of composite and implicit functions. Euler's Theorem on homogeneous functions, differentiability of

lesson plans on 29.10.2025					
November	01.11.2025	13.11.2025	Schwarz and Young's theorems (without	Doubt session,	
			proof).	Question papers	
				discussed.	
				Revision tests.	
Departmental Meeting to Coordinate and Review the Monthly completion of Syllabus as per lesson					
plans on 12.11.2025					
End semest	er Examinatio	on 14.11.2025	to 26.12.2025		